

# A/Prof. Markus Muttenthaler

Institute for Biological Chemistry Faculty of Chemistry University of Vienna Email: markus.muttenthaler@univie.ac.at Web: www.neuropeptidelab.com



# The Neuropeptide Research Lab

Neuropeptides are key mediators in many biological functions, and understanding their interaction with target proteins is fundamental to unravel the underlying mechanism of diseases. Over the years, an increasing number of bioactive peptides from animals, plants, and bacteria have been characterised, with the overwhelming realisation that these molecules often show better therapeutic performance than their human counterparts, particularly regarding *in vivo* stability.

Our main research efforts situated in this area of Chemical Biology focus on the exploration and translation of these vast and untapped natural libraries towards the development of useful research tools and therapeutics. Solid-phase peptide synthesis, the main tool to access these compounds, is a powerful technology for the assembly and chemical modification of these highly chiral and structurally complex peptides. We then use these ligands to develop advanced molecular probes and therapeutic leads to address important questions of unmet medical need.

We are currently looking for talented and ambitious Master and PhD students for projects centred around (i) the oxytocin and vasopressin signalling system in health and disease, (ii) the trefoil factor peptides and gastrointestinal disorders, (iii) probe development to study memory formation, and (iv) venom peptide drug discovery. Please see the project descriptions below for further details.

If interested, please send your CV, grade transcripts and a brief cover letter to markus.muttenthaler@univie.ac.at.

## **Requirements**

Strong chemistry background and synthetic lab skills (organic chemistry, peptide/protein chemistry) Strong ambition and good work ethics

## Techniques likely to learn (project dependent)

Solid-phase peptide synthesis Organic chemistry Medicinal chemistry High-performance liquid chromatography Mass spectrometry, Proteomics Nuclear magnetic resonance spectroscopy Recombinant protein expression Cell culture and pharmacological assays Gastrointestinal stability assays Gastrointestinal wound healing assays Proliferation and transmigration assays

#### Project 1 – Oxytocin and Vasopressin Research

The oxytocin and vasopressin signalling system regulates fundamental physiological processes such as reproduction, water balance, cardiovascular responses and complex social behaviour. It is also a high-profile target for autism, schizophrenia, stress, depression, anxiety, cancer and pain. Our group is particularly interested in creating a complete molecular toolbox to study this signalling system as well as in discovering novel therapeutic leads for autism, pain, gastrointestinal disorders and breast cancer. This project entails structure-activity-relationship studies and medicinal chemistry approaches to develop novel probes and drug candidates for the oxytocin and vasopressin system.

#### Project 2 – Trefoil factor peptides and their role in gastrointestinal disorders

The gastrointestinal epithelium is a major physical barrier that protects us from diverse and potentially immunogenic or toxic content. A damaged epithelium increases permeability to such content, thus leading to inflammation, uncontrolled immune response, and diseases, such as irritable bowel syndrome and inflammatory bowel diseases that affect 10-15% of the population. Our group is involved in the identification and validation of novel drug targets and therapeutic strategies that can protect or repair this important barrier to prevent or treat such disorders. This project focuses on developing novel trefoil factor peptide probes to understand their mechanisms of action in gastrointestinal protection and wound healing.

#### Project 3 – Neuropeptides and long-term memory formation

Memory is probably the single most important brain process that defines our personality and gives us the sense of individuality. Emotional events often cause the generation of strong memories that exist for many years, yet the underlying mechanisms are still poorly understood. Neuropeptides are key players in regulating emotions and have been associated with long-term memory formation. This project is focused on the development of advanced molecular probes to understand how neuropeptides can mediate long-term memory formation.

#### Project 4 – Venoms to drugs

Venoms comprise a highly complex cocktail of bioactive peptides evolved to paralyse prey and defend against predators. Homology of prey/predator receptors to human receptors render these venom peptides also active on human receptors and they have become a rich source for neurological tools and therapeutics. This project comprises discovery, synthesis and structure-activity relationship studies of these venom peptides with the goal to develop novel probes for neuroscientists as well as therapeutic drug leads.

#### Project 5 – Targeting gut biofilms in patients with gastrointestinal disorders

Gastrointestinal disorders affect 10–15% of the Western population, reduce the quality of life and result in substantial socioeconomic costs. Recently, we have observed bacterial biofilms in the gastrointestinal tract of IBD and IBS patients, but their disease relevance, function and composition are unknown. This project aims to (i) use various analytical techniques to profile these gut biofilms and (ii) to develop biofilm-specific modulators to explore novel therapeutic strategies.